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Abstract- In this paper, a refined theory of laminated composite plates with piezoelectric laminae
is developed. The equations of motion of the theory are developed using an energy principle. This
formulation is based on linear piezoelectricity, and includes the coupling between mechanical
deformations and the charge equations of electrostatics. The theory developed herein is hybrid in
the sense that an equivalent single-layer theory is used for the mechanical displacement field, whereas
the potential function for piezoelectric laminae is modeled using a layerwise discretization in the
thickness direction. For the equivalent single layer, the third-order shear deformation theory of
Reddy is used. This hybrid feature is good in that it demonstrates a way in which multilayered
smart skin piezoelectric structures may be analysed to accommodate multiple voltage inputs and/or
sensor outputs.

I. INTRODUCTION

The study of embedded or surface-mounted piezoelectric materials in structures has received
considerable attention in recent years. One reason for this is that it may be possible to
create certain types of structures and systems capable of adapting to or correcting for
changing operating conditions. The advantage of incorporating these special types of
material into the structure is that the sensing and actuating mechanism becomes part of the
structure by sensing and actuating strains directly. These types of mechanisms are referred
to as strain sensing and actuating (SSA). This advantage is especially apparent for structures
that are deployed in space. Generally, space-borne structures are very flexible because they
are not designed for operations in which the force of gravity is present. In addition, they
are characterized as having very low levels of damping. Thus, transient vibrations endure
for longer periods of time than is acceptable and operations may be interrupted. Proof­
mass actuators, thrusters, and piezoelectric materials as described here are possible means
of controlling the vibrations. Of course, there may also be many other good methods that
have not as yet been thought of. However, generally speaking, most actuator systems other
than the strain-induced type add a considerable amount of weight and possibly space to
the structure, thereby changing its mechanical properties significantly.

In order to utilize the strain-sensing and actuating properties of piezoelectric materials,
the interaction between the structure and the SSA material must be well understood.
Mechanical models for studying the interaction of piezoelectric patches surface-mounted
to beams have been developed by Crawley and de Luis (1987), 1m and Atluri (1989), and
Chandra and Chopra (1993). The study presented here is different from these in that we
study laminated plates containing piezoelectric laminae. The SSA lamina can offer both a
discrete effect similar to patches as well as a distributed effect. Lee (1990) derived a
theory for laminated piezoelectric plates based on classical plate theory, where the linear
piezoelectric constitutive equations were the only source of coupling between the electric
field and the mechanical displacement field. Pai et al. (1993) have presented a geometrically
non-linear plate theory for the analysis of composite plates with distributed piezoelectric
laminae. However, their model does not include the charge equations of electrostatics. In
constrast, Tiersten (1969) modeled single-layer piezoelectric plates, including the charge
equations, but did not study laminates. Tzou and Gadre (1989) derived equations of motion
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for thin laminated shells with piezoelectric layers based upon Love's first-approximation
shell theory and Hamilton's principle. At that time, they did not include the charge equations
in the model. Later, Tzou and Zhong (1993) derived governing equations for piezoelectric
shells using first-order shear deformation theory and included the charge equations of
electrostatics. From these equations, classical and first-order shear deformation plate
theories were derived for single-layer piezoelectric laminae.

It is the purpose of this article to present a simple method of enhancing current plate
theories to include the charge equations of electrostatics. This is accomplished by modeling
the scalar potential function, from which the electric field is derived, using the layerwise
approach of Reddy (1987, 1994). In this way, classical and shear deformation theories for
plates can be enhanced so that a physically correct model of the piezoelectric effect can be
included. The work presented here is most closely related to a paper published by Lee
(1990). In contrast, the coupling between the electric field and the mechanical displacement
field is modeled to include the charge equations of electrostatics.

As a final note to this introduction, we comment that for the case of plane stress as
presented here, the degree of coupling between mechanical deformations and the electric
field may vary from negligible to significant, depending upon the materials and loading
conditions involved. However, for the case of thick plates the coupling is likely to be
significant. Also, an equivalent single-layer theory (ESL) for the mechanical displacements
would no longer be valid. In this case, one approach would be to model both the mechanical
displacement field as well as the scalar potential using the layerwise theory of Reddy (1987).
This generalized approach is discussed in a forthcoming paper by the authors [see Reddy
and Mitchell (1994)]. Since the present approach combines a layerwise-type approximation
with an equivalent single-layer theory (ESL), it is labeled as a refined hybrid theory.

2. FORMULAnON

2.1. Piezoelectricity
In this paper, Hamilton's principle is applied to derive a set of approximate governing

equations for laminated plates with piezoelectric laminae based on the linear theory of
piezoelectricity, which in turn is based on a sequence of two approximations. First, the
non-linear theory of electroelasticity is derived from the well-known conservation laws for
a mechanical continuum and the conservation laws derived from Maxwells' equations [see
Penfield and Haus (1967)]. In this step, a quasistatic electric field approximation is made,
which allows for the electric field to be derivable from a scalar potential function. It is also
assumed that the magnetic field and magnetization have negligible influence and that the
electric field, polarization, and charge density are of primary concern when describing the
motion and deformation of the material.

The second approximation, from whence the linear theory of piezoelectricity is derived,
is that deformations are infinitesimal and that electric fields are small [see Tiersten (1981)].
In the theory, the charge equations of electrostatics are coupled to the mechanical defor­
mations by using a modified Lagrangian function given by

(1)

where H (£ij' EJ is called the electric enthalpy density function, £ij are the components of
the strain tensor, and Ei are the components of the electric field vector. In the present study
H (£ij' EJ is taken as [see Tiersten (1969) and Reddy (1994)]

(2)

----r-...

where Cljkl, eljb and k ij are called the elastic, piezoelectric, and dielectric permittiVity
constants, respectively. As described above, the electric field Ei is derivable from a scalar
potential function ¢> as follows:
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(3)

Equations (1)-(3) describe the linear theory of piezoelectricity, which when combined with
Hamilton's principle, can be used to derive a set of approximate governing equations for
laminated plates. Using the above definitions, and assuming there are no body forces, the
variational step leads to

where <Jij and D; are the components of the stress tensor and the electric displacement
vector, respectively, derived from H(8;j, E;) as

8H
(Sa)D; = - 8E;

and

8H
(Sb)<J;j = a.

8ij

Also note that the mechanical and electric work done by surface traction t; and applied
charge density q have been included in the functional. Here we assume that the entire
surface of the dielectric is covered with electrode. Then q is the charge density that can exist
in the conductor at a dielectric conductor interface. In most applications, ¢ is specified on
the surface and the charge density q would be found in a postcomputation, or in sensor
applications [see Lee (1990)] it may be a measured quantity.

2.2. Displacement field
In the third-order shear deformation theory of Reddy (1984, 1994), the displacement

field is assumed to be of the form

8wo
U2(X,Y,z,t) = vo(.x,y,t)+91(Z)ljJy(x,y,t)-92(Z) 8y'

U3(X,y,Z, t) = wo(x,y, t),

(6a)

(6b)

(6c)

where (uo, Vo, wo) are the displacements of a point on the midplane of the laminate, and
(ljJ x' ljJy) denote the rotations of a tranverse normal at Z = 0 about the y and - x axes,
respectively.

The salient feature of this particular theory is that it allows for cubic distortion of the
normals to the midplane while at the same time eliminating the need for shear correction
factors. This is possible because of the particular form of the functions 91 (z) and 92(Z),
which are given as

(7)

where T is the total laminate thickness and z is assumed to be measured from the laminate
geometric midplane. Using these definitions, it is easy to verify that the transverse shear
strains 84 and 85 are zero at the upper and lower surfaces of the plate, and vary quadratically
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through the thickness. Although this particular approximation was developed for laminate
plates without piezoelectric laminae, it also serves well when piezoelectric laminae are
present, since contributions to the shear stress on the major surfaces due to piezoelectric
laminae derive from the gradient of the potential function. Corresponding to this, a plate
having piezoelectric laminae on its outer surfaces covered with a very thin electrode will not
have any component of inplane electric fields On these surfaces because they are equipotential.
Further, since transverse shear stresses due to piezoelectric effects result from components
of the inplane electric field (this depends upon the particular form of the constitutive
relationships), it follows that shear stresses On the free surfaces result due to mechanical
effects only.

At this stage, the tensor notation is abandoned and the engineering notation is adopted
for stresses, strains, and piezoelectric and permittivity constants. The following definitions
for infinitesimal engineering strains 8" i = 1,2, ... , 6 are used:

GUo
£2 == 8 22 ==~;

OX2

(8)

The last approximation to be made in this variational formulation is for the potential
function ¢. It is convenient to model ¢ on a discrete layer approximation as follows.

n

¢(x,y, z, t) = I jj(Z)({Jj(X'y, t),
I~ I

(9)

wherejj(z) are taken to be Lagrange interpolation functions [see Reddy (1993)]. This is
equivalent to modeling the variation of ¢ through the thickness with I-D finite elements.
Non-piezoelectric laminae can be modeled by simply setting the piezoelectric constants to
zero and retaining the dielectric permittivity constants if necessary. In this way it is possible
to model and analyse very arbitrary applied potential loading conditions as well as more
than One material type including piezoelectric.

2.3. Constitutive relationships
The model proposed here is useful for laminates with laminae having arbitrary orien­

tations through the thickness. However, for derivations presented here it is assumed that
the principle material coordinates coincide with the coordinates of the problem being
analysed. The constitutive relationship for a material having orthorhombic mm2 symmetry,
induding piezoelectric effects, is given as follows:
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Based on this constitutive relationship, PVDF (polyvinylidene fluoride) [see Varadan ct al.
(1989) and Nix and Ward (\986)] and PZT (lead zirconate-titanate) [see Dunn and Taya
(\993)] materials can be considered. In this analysis, the plane stress approximation is
made, thus requiring modifications to the above constitutive relationships. By setting (J3 = 0,
the strain 83 is eliminated from the constitutive relationships. While the labels for the elastic,
piezoelectric stress, and dielectric permittivity constants are not changed, it is assumed that
they have been adjusted to accommodate the plane stress aproximation.

2.4. Equations ofmotion
In this analysis, a variational formulation is used to derive a two-dimensional theory

from the fully three-dimensional theory of linear piezoelectricity. By making the approxi­
mations concerning the displacement field (UI' U2, U3) and the potential function ¢ as
described in previous sections, it is possible to eliminate the dependency of the primary
variables (Ub U2, U3, ¢) upon the thickness coordinate z. In particular, the mechanical
displacement field corresponds to an equivalent single-layer theory and the potential func­
tion approximation corresponds to a layerwise theory. To obtain the equations of motion
and boundary conditions for the two-dimensional theory, approximations are substituted
into eqn (4). This procedure is identical to that used for standard equivalent single-layer
theories [see Reddy (1994)]. The z-dependence is integrated out by defining convenient
stress and charge resultants. Boundary conditions and the Euler-Lagrange equations are
then obtained from Hamilton's principle.

Proceeding as described above, eqn (4) is expanded, giving

- rTo r{(JI bel + (J2be2 + (J3be3 + 2(J4be4 +2(Jsb8 s +2(J6bed d V dtJo Jv

(11)

Let eqn (\ 1) be defined as the sum of four integrals:
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0= i5K+i5U+i5E+i5V. (12)

The first integral denotes the virtual kinetic energy, the second denotes the virtual work
done by internal forces, the third represents the contribution of the electric field, and the
fourth denotes the virtual potential energy due to applied forces. In Hamilton's principle,
it is assumed that the virtual displacements are zero at t = 0, To: i5uil~o = O.

We begin with the first integral. Integrating the terms by parts to transfer all differ­
entiations from the virtual displacements to their coefficients, we obtain

(13)

where the mass inertia terms Ii are defined in the Appendix. Before proceeding with the
second integral, we note that the transverse normal strain associated with the assumed
displacement field (7) is zero. Hence, the admissible virtual strain is also zero, making the
term &30"3 = O. On the other hand, 0"3 is assumed to be negligible by using the plane stress
assumption. We have

where (N" Mi, Pi) are the stress resultants

(14)

f
hi 2

N i = O"jdz
-h/2

Mi = fh
l

2. O"i9](z)dz Pi = fh
l
2 O"i92(z)dz,

-h12 -h/2

- fh/2 d9] .
Qi = . O"i-d dz, 1=4,5.

-h!2 z

i = 1,2,6, (15a)

(15b)

The overbars are used to indicate that resultants result from both the strain field and the
electric field. Later, these effects will be separated out to indicate the nature of the coupling
between the two. To obtain the Euler-Lagrange equations from (12), i5 U must be integrated
by parts to transfer all differentiations from the virtual displacements to their coefficients.
We obtain
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[ - (owo) (owo) (OP6 OP6
) ]- P6 0 oy n,+P6b OX ny- OX nJ'+ oy nx OWo

+nvQ4bwo +nxQsbwo }dS.

Similarly, the third integral can be written, in view of eqns (3) and (9), as

= - fTo f [1 Jt Pl.} O(OCPJ) +t G~kbCP7}dAJdt
Jo k~l A 1=1 ox, )=\

iTo {rn [t n. J n (oPjk ) ]}= - II p~kn,l3CPJds-I ~_G~k l3cpJ dA dt,° k= I S J= 1 A )= lUX,

where (0: = 1,2) and
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(16)

(l7a)

(l7b)

Substituting expressions from eqns (13), (16), and (17) into (12), and collecting the
coefficients of (buo, ova' bwo, oljJ" l3ljJy' oCPJ) and setting them to zero, we obtain the Euler~

Lagrange equations:

(l8a)

(18b)
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(l8d)

(l8e)

(a = 1,2). (18t)

Now it is useful to decompose the stress resultants lVi' Mh Pi' Qi into two parts. The
first part is that which would be given if the piezoelectric effect was not present. The
second part results due to the presence of the piezoelectric lamina. Recall the constitutive
relationships and strain relationships (excluding piezoelectric terms) :

OUo

,~J
oX

,~Jr} ['" C12
oVo ['" C12

:: = C~2
Cn oy +91 C~2 Cn

0
OUo OVo

0
~+~

oy ox

ot/Jx
ox

ot/Jy
oy

ot/Jx ot/Jy-+-oy ox

02 WO

ox2

02 WO

oy2
02 W2__0

oxoy

, (l9a)

{
0"4} = d9[ lC44

0" 5 dz 0
(l9b)

As described above, the stress resultants are decomposed as:

lVi = Ni+N;, (20a)

Mi=Mi+M;, (20b)

Pi = Pi+P;, (20c)

Qi = Qi+Q;, (20d)

where superscripts P denote resultants due to piezoelectric effects, and Nh Mh Ph and Qi
are the usual stress resultants, which are related to the strains through the following laminate
constitutive relationships:
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(2Ia)

(2Ib)

where the laminate stiffnesses A ij , Bij and so on are defined in the Appendix. To evaluate
the piezoelectric stress resultants recall the approximation for the potential function and
the terms contributing to the stress components due to the piezoelectric effect. These stresses
are given as

p ~ dJj
0"1 = e3l L. -d ({Jj,

i= I Z

O"~ = o. (22)

Note that these are stresses defined at the layerwise element level. Also it is clear that the
piezoelectric contribution to the inplane shear stress 0"6 is zero when the piezoelectric
material axes are coincident with the laminate axes as considered here. Now the stress
resultants due to the piezoelectric lamina can be defined as
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Nf = ktl e~, Ct/{kcpJ). N~ = kt, e~2CtJWcpj). N~ = 0,

m (n a k) m (n a k)P k jk <:P j P k jk <:PjQ4 = L e24 L Ct4 -8 ' Qs = L e,s L Ct4;;- .
k~ I j~ I Y k~' j=' uX

(23a)

(23b)

(23c)

(23d)

Note that m corresponds to the number of laminae in the laminate and n corresponds to
the number of nodes used to model a particular lamina. The appendix contains the defi­
nitions for [Ji/, {J~k, {J-j,\ and Ct~k which simply result from integrating through the thickness
direction. With these definitions for stress resultants, the Euler-Lagrange equations are
now written in terms of the mechanical and piezoelectric resultants:

(24a)

(24b)

(24c)

T

Equations (24) are subject to the following essential boundary conditions (EBC) and the
natural boundary conditions (NBC) :
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Uo or n{Nl + ktl e11 CtJ3~kCP7) ]+N6nV

Vo or n{N2 +kt, e12 (JJWcp;)]+N6n,

where

_ OP6 _ OP6 _ [ ;: k (~JkOCPJ)] [ ~ k (~ JkOCPJ)]
n':1, nY :1 n,. Q4+L.. e24 .L.. OC4:1, -nx QS+L..e15L..OC4:1 .

u} uX k= I ,~ ,U} k~ I J~ I uX

(25a)

(25b)

(25c)

(25d)

(25e)

(25t)

(25g)

(26)

Next we discuss the charge boundary condition from the third and fourth integrals. In
most circumstances, the potential on the surfaces of the piezoelectric is specified and the
charge density q per unit area is found in a postcalculation. This is described here in detail
not only because it is a necessary step for the theory presented here, but also because
laminae may be used for sensors as well as actuators. In the case of sensors, strains and or
strain rate measurements may be made by measuring charge, currents, or voltages on the
major surfaces of the piezoelectric lamina [see, e.g. Lee (1990), Lee and Moon (1990), and
Tzou et al. (1993)]. These measurements are based on the fact that at a dielectric-eonductor
interface, D' fi = q, where fi is the outward unit normal to the conductor surface. This
necessary condition arises naturally in the formulation here and gives physical insight into
the assembly process.

To begin, the charge term in b V and all of bE for the kth lamina is rewritten here as

rTO

f qb1> dsdt- rTo r DJc51>L d V dt = 0,
Jo Sk Jo JVk

(27)

where Sk and V k correspond to the surface and volume of the kth lamina. The surface
integral is composed of three parts: the major surfaces S~ (bottom), S~ (top), and edges
of the plate S1. On the major surfaces S~ and S~ at Z = Zk and Z = Zk+ 1 respectively, the
potential ¢ is given as
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cP(Zk) = .r7~ I (zk)cP7~ I = cPJ= I,

cP(Zk+ I) = f7~n(Zk+ I )cP;=n = cP7~n. (28)

Each mathematical layer or lamina has n nodes and assembly is accomplished by setting

(29)

This is the normal process of assembly described in books on the finite element method [see
Reddy (1993)] where q>7 is called a primary variable. A secondary variable or flux-type
term is also defined, and in this case it corresponds to the normal component of the
electric displacement. If the interface between mathematical layers is a conductor-dielectric
interface, then a charge q can exist there due to a combination of applied mechanical as
well as electrical loadings.

Returning to the charge equations (27), substituting the approximation for the poten­
tial function, and summing over all laminae, the following equation is given:

iTo [m {f (n ) i [n ( cr5q>k0= I q I jj/5q>J ds- I D1jj-_l
o k~1 S' /~1 v' /=1 AX

(30)

The volume integral in the above equation is selectively integrated by parts so that the
appropriate boundary conditions are obtained. The surface integral is now taken in three
parts over surfaces S1 , S~, and S~ :

Using the same definitions as given previously in this paper for the charge resultants, and
defining a new lamina charge as

1
2H1

qjk = _ qjj(z) dz,
.,

a slightly different form for the governing charge equations is obtained:

where a = 1,2

(32)

(33)

(34)

Notice the difference in the definitions for G~k and Gjk. While the resulting equations look
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different because of the different definitions for Gf and C~k, they are equivalent since
differences arise due to integration by parts only. However, from this modified form, it is
possible to identify boundary conditions that should be satisfied. Although this is an
approximate formulation, the boundary conditions are essentially identical to those
obtained using a linear theory with no approximations. It is also noted that G~k is obtained
from the weak form and combined with ap~k/()x" which is a term representing an approxi­
mation to the strong form of the governing equation. Because of this fact, G~k is easier to
work with in terms of actual implementation because it requires less differentiability of the
interpolation functionsJj(z). In example problems studied here, the equations with G{k are
used. This latter description was derived here to indicate that all the essential physics
concerning the charge equations of electrostatics are embedded in this approximate theory
and also to discuss briefly how the charge boundary conditions given here relate to pre­
viously published work concerning piezoelectric laminae as sensors.

3. DISCUSSION OF LAMINA SENSORS

Next we make the connection between the present theory and two previously published
theories (Lee, 1990 and Tzou et al., 1993), concerning piezoelectric laminae as sensors. For
sensor purposes, Tzou et at. (1993) take the lamina to be in an open-circuit condition and
assume that the charge equations, which correspond to the divergence of the electric
displacements, reduce to the divergence of D) with respect to x) (the thickness coordinate)
for thin laminates. In the present theory, this corresponds to assuming that for the kth
lamina, the following equation is automatically satisfied:

(35)

The extent to which this equation is not satisfied depends upon the thickness of the lamina
and on how much shear stress the lamina is subjected to. Based on this assumption, the
remaining portion of the charge equation is

(36)

Using the constitutive relationship for D J , we obtain

(37)

The connection of this assumption to modeling is through the selection of interpolation
functions Jj(z). Based on the thin lamina assumption, one linear interpolation function is
used for the piezoelectric lamina. In the variational formulation, the potential at the top
and bottom of the laminae is not specified because of the open circuit sensor condition and
therefore we conclude that two charge equations corresponding to two primary nodal
variables must be satisfied. This corresponds to letting) = I and 2 in eqn (37). Substituting
the linear interpolation functions into eqn (37), and integrating through the thickness of
the kth lamina gives

(38)

where V~ = (M - c/J;). The same equation is given for both) = 1 and 2. Here, we interpret
the left-hand side as the local voltage induced by the strain field on the right-hand side.

SAS 32: 16-F

-r------.----.-.----
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Equation (38) corresponds to eqn (6) in the paper by Tzou et al. (1993). An alternative
approach is to close the circuit so that the charge flow can be measured. The total charge
Qk is that given by

where S~2 = S~ (l S~ and is called the effective surface electrode [see Lee (1990)]. So that
the charge signal can be directly related to mechanical deformation, the major surfaces of
the lamina are short-circuited, and piezoelectric laminae are modeled with one linear
element. As in the previous sensor discussion above, the charge signal may still contain
effects due to non-linear variations (with respect to z) of the potential interior to the lamina
major surfaces. While this is probably more correct, this effect is likely to be insignificant
if the piezoelectric lamina is thin, as was considered by Lee (1990). However, it should be
noted that it is not possible, from the work of Lee (1990), to model effects which arise due
to some piezoelectric lamina surfaces not being covered with electrodes. In this case, both
continuity of potential and the normal component ofelectric displacement must be enforced
between the lamina and whatever it is adjacent to. If for instance the lamina is exposed to
free space, then a differential equation on the electric potential </i for free space should be
solved [see Tiersten (1981)]. Then the potential corresponding to material points on the
surface should match the potential for free space. In the case of the present theory, the
deformations are assumed to be small and therefore the present coordinates of the laminate
can be taken as the undeformed coordinates. It is possible to incorporate this into the
current model in addition to other types of loading conditions such as interdigitated
electrodes [see Hagood et al. (1993)]. Traditionally, most piezoelectric applications in smart
structures have fields applied through the thickness direction of the lamina. In these cases,
assuming that the electric field is constant through the thickness is a good approximation.
However, it is impossible to use these types of models to analyse conditions such as those
present due to interdigitated surface electrodes.

4. RESULTS

4.1. Analytical solution
In this section, the equations derived in Section 2 are used to study static deflections

and natural frequencies of symmetric, simply supported, laminated plates with piezoelectric
laminae. Various plate span ratios and plate thickness studies are given here. To investigate
the effects of modeling the potential function, results are also presented for classical plate
theory (CPT) and for the third-order shear deformation theory using the induced strains
method. Although the charge equations of electrostatics have been added to the system of
governing equations for this hybrid theory, it is still possible to find the Navier solution for
simply supported, symmetric cross-ply plates. The solution for simply supported cross-ply
laminates has the following form:

w = II Wmn sinmx sin ny,

t/Jv = I I t/J~m sin mx cos ny,

¢ = II¢mnsinmxsinny. (40)

For the particular examples considered here, the inplane displacement field (uo, vo) is
uncoupled from the out-of-plane displacement field (wo, t/J" t/Jy). This is briefly discussed
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here. Recall that for symmetric laminates, the constitutive elements A, A are zero and
therefore coupling cannot occur mechanically. Therefore the only remaining source of
coupling is through the potential function. The particular source of coupling [see eqns (24a)
and (24b)] is only possible through the terms

(41)

To investigate further, consider two adjacent mathematical layers below the z = 0 plane
and its symmetric counterparts above the z = 0 plane. Let each mathematical layer be
modeled using linear Lagrange elements. During the assembly process, the common node
between adjacent elements will have, say rj/ as a global variable name and assembly will
give a term corresponding to this common node as

(42)

In the case of linear elements we have

(43)

Therefore the assembly process gives

(44)

This illustrates the possibility for coupling. If two adjacent mathematical layers are com­
posed of different piezoelectric materials, say e~ 1 and e~t 1 , and the potential is not specified
at this interface, then e~ I - e~t I =I- 0 and the inplane displacement field is coupled with the
out-of-plane displacement field through the potential function. However, if the two layers
are composed of the same piezoelectric material, then coupling will not occur. To sum­
marize, assembly is concerned with adding the effects of adjacent elements at a node. When
one piezoelectric element or lamina is not adjacent to another, then the potential is typically
applied there. This corresponds to the forcing term that goes to the right-hand side of the
governing equations.

Now consider the symmetry of the laminate and applied voltages. For plates, piezo­
electric laminae can be utilized as benders or pushers. Benders utilize symmetry of both the
laminate and the applied voltages. This naturally falls out of the present theory during
assembly. Benders induce an antisymmetric axial stress field in the laminate, thus giving a
zero net inplane force resultant but a non-zero moment. In this case, the inplane dis­
placement field is zero because the forcing terms that go to the right-hand side of eqns (24a)
and (24b) add to zero for similar reasons to those described for adjacent elements during
assembly.

4.2. Discussion of the results
The phrase 'strain induced method' refers to a method in which the piezoelectric effect

is included in the mechanical constitutive relationships only, and the charge equations of
electrostatics are ignored. Results from the present study indicate that for PVDF and PZT,
the above assumption is valid for a large range of plate span ratios and piezoelectric
thickness ratios. However, as the plate becomes thicker (within the range of validity of
shear deformation theories), modeling of the electric potential becomes more important,
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--------------------------------------
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symmetric

Fig. I. Geometry and laminate configurations.

especially for plates with a high piezoelectric thickness ratio hiT (see Fig. 1). The material
properties used in the examples are given in the Appendix. Also, it should be noted that
results correspond to the layerwise discretization of one quadratic element per piezoelectric
layer.

In general, PVDF laminates show a high degree of insensitivity to the modeling of the
electric potential, as indicated in Fig. 2. The transverse deflection at the center of the plate
is identical for all three theories considered here: CPT, strain induced third-order plate
theory, and third-order theory including electric potential. These deflections are due to a
uniform unit potential applied across each PVDF layer in order to induce bending. In this
case there are two factors that affect the trends. As the PVDF lamina becomes thicker the
effective electric field is reduced, thereby inducing less strains and ultimately reduced
deflections. However, due to the fact that PVDF is mechanically weakerthan the aluminium
that it replaces, as the piezoelectric thickness ratio increases, the magnitude of the resulting
deflections increases. The relative importance of these two effects is reversed in laminates
containing PZT; PZT is mechanically as strong as aluminum and therefore as the PZT
layers become thicker the effective E fields are reduced, thereby reducing the resulting
deflections. In addition, PZT has significantly larger dielectric constants than PVDF,
thereby increasing the coupling between the charge equations and the momentum equations.
Therefore, it becomes more important to model the electric potential.

Figures 3-8 contain the static deflection at the center of the plate for three different
span ratios alT and for all three of the previously mentioned theories. In Figures 3-5, the
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Fig. 2. Deflection versus piezoelectric thickness ratio for various theories (PVDF).

deflections are due to a unit potential uniformly applied to the top and bottom surfaces of
the plate with the aluminium lamina being grounded. This corresponds to the same loading
condition described for the laminates with PVDF. However, in this case modeling of the
potential has some apparent effects, especially as the laminates become thicker and as the
piezoelectric thickness ratios become larger. Note the percent differences indicated on the
figures as well as the relative magnitudes of the deflections as the plates become thicker.
Deflections in Figs 6-8 correspond to a unit voltage on a square patch at the center of the
plate, with the side of the patch being one-third of the size of the plate. The remaining
surfaces were grounded. In these cases the potential effects are more pronounced and are
significant for thicker plates with high piezoelectric thickness ratios. It is interesting to note
that for small piezoelectric thickness ratios, all three theories give nearly the same results.
However, even for small piezoelectric thickness ratios (hiT = 0.1), the CPT theory begins
to give slightly different results as the plates become thicker. This phenomenon does not
appear to be related to modeling of the potential since the other two theories do not show
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this; hence the effect must be related to the fact that shear deformation is not accounted
for in the CPT.

Ignoring shear deformation seems to be the primary reason for differences in the
calculated lowest natural frequencies given in Figs 9-11. Note that these frequencies have
been non-dimensionalized according to {i) = wT~, where w is the actual plate
frequency, Tis the plate thickness, and p and ell are the mass density and material stiffness,
respectively, for the aluminum. In the classical plate theory (CPT), shear deformation is
not included and thus the plate is artificially stiffened, yielding a higher fundamental
frequency. As the plate becomes thicker, this effect is pronounced, as expected. For high
piezoelectric thickness ratios, the effect of modeling the potential is relatively the same for
the three span ratios. Modeling the potential effectively stiffens the plate, thereby giving a
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higher fundamental frequency, but this effect is largest when the piezoelectric thickness
ratio is at its maximum.

5. CONCLUSIONS

In this paper, a hybrid theory for enhancing laminated plate theories to include
piezoelectric laminae is presented. The theory is based on modeling the electric potential
through the laminate thickness with I-D finite elements. As a result of modeling the
piezoelectric lamina, in-plane and out-of-plane displacement fields may become coupled
for symmetric cross-ply laminates, and the nature and source of this coupling was briefly
discussed. Simplifying assumptions concerning the charge equations were made so that
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sensor equations could be derived, and these were compared with those from the literature.
Finally, some numerical results were given for symmetric simply supported plates. Results
indicate that thin piezoelectric laminae with a potential applied across the thickness direc­
tion can be modeled simply with strain induced methods. However, as the lamina becomes
thicker, it becomes necessary to model the potential function, as is done here. For voltage
loading conditions other than in the thickness direction, the model presented here is
necessary, since the induced E field is not uniform.
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APPENDIX

Mass inertia constants:

f
h
" fh" f'"I, = _'I' pdz, 13= -1,!2 pg,(z)dz, Is = -hi' pg,(z)g,(z)dz,

f"·2 f"" f""I, = P9, dz, 14 = . P9, (z)g, (z) dz, I. = pg,(Z)g2(Z) dz.
-hll -hi2 -hi2

Mechanical laminate stiffnesses:

A = f'" cdz, A = f'''' g,(z)cdz, A = fhi' g,(z)cdz,
-hll -h/2 -h,/2

(AI)

f
h

"

B = -"/2 g, (Z)9' (z)cdz,

f'"D = . g, (z)g, (z)c dz,
-h/2

f"!' (d9')'F S5 = C" dz dz,
-hil

where

f'''' (d9')'F44 = C44 d dz,
-h/2 Z

(A2)

[

C ll

C = c~'

Piezoelectric resultant constants

o

f" dg
ry,jk = -'f,dz

4 dz )
::k-I

(A3)
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Material properties:
PZT:

148 76.2 74.2 0 0 0

148 74.2 0 0 0

C E =
131 0 0 0

symmetric 25.4 0 0
GPa,

25.4 0

35.9

0 0 -2.1

0 0 -2.1

[1'
0

o ]eT = 0 0
k

9.5 k;= 460 o ,
0 9.2 0 m' 0 235

9.2 0 0

where eT denotes traspose of matrix e, CE denotes elastic stiffnesses at constant electric field, and

-12 c
2

ko = 8.85 x 10 --.
N-m'

PVDF:

eT=CEJT

where

3.61 1.61 1.42 0 0 0

3.13 1.31 0 0 0

CE =
1.63 0 0 0

0.55 0 0
GPa,

0.59 0

0.69

0 0 21.0

0 0 1.5

[6:'
0

o ]dT =
0 0 -32.5

xlO-I'~
k
k;= 7.5 o .

0 -23 0 N'
0 6.7

-27 0 0

0 0 0

Aluminum:
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